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ABSTRACT  
In this paper, we present an algorithm allocating tasks for a set of static autonomous radars with rotating 
antennas. It allows a set of radars to allocate in a fully decentralized way a set of tasks for tracking targets 
according to their location, considering that tracking a target with several can improve accuracy. The 
allocation algorithm proceeds through a collaborative and fully decentralized auction protocol, using a 
collaborative auction protocol (Consensus Based Bundle Auction algorithm). Our algorithm is based on a 
double use of our allocation protocol among the radars. The latter begin by allocating targets, then launch a 
second round of allocation if they have resources left, in order to improve accuracy on targets already 
tracked. 

1.0 INTRODUCTION 

Managing multiple sensors is a topic of rising interest. The coordination of multiple radars is very useful 
when the sensors are mobile, but even in the case of fixed radars, coordination can improve the overall 
performance of a radar system. This can be achieved in multiple ways: first, in cases where all the radars 
cannot track all the target in range, distributing the targets among the radars can allow to track more targets. 
But this is not the only advantage that can be taken from the coordination of radars. By choosing to allocate 
the same target to well chosen radars, it is also possible to improve the precision of the tracking by 
intersecting the information of the radars. Coordination can be achieved either in a centralized or in a 
decentralized way. Decentralized allocation allows to be more resilient, both in the case of a failure of the 
center and in the case of a communication issue between the center and the radars. In both cases, the fact that 
the computation is replicated and the fact that the radars communicate with multiple others allow the overall 
system to keep working despite potential faults. Performing such decentralized allocation falls in the field of 
multi-agent systems. In this paradigm, so called “agents” (here radars) act in an autonomous, reactive, 
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proactive yet interactive way in order to achieve their goals. The social ability allows agents to communicate, 
hence to organize themselves in a decentralized way.  

Multi-agents have been widely used in robot teams. One of the major issues regarding robots is the real-time 
constraint, which is also applicable in the context of radars. In this context, the main application methods are 
machine learning [2], market-based methods and DCOP [8]. In this paper we introduce a new method based 
on a double distributed action in order to allocate targets to radars in a tracking setting. Our approach allows 
to allocate the targets in an efficient way in real time, while allowing two radars to track the same target in 
order to improve the precision around the targets. In order to evaluate our approach, we compare it with a 
centralized approach, based on a centralized solver (Coin OR Branch and Cut, CBC) and show that the 
stability of the algorithm allows to perform better than the centralized approach. 

The paper is organized as follows: section 2 introduces related works on decentralized task allocation for 
sensors, and in particular market-based approaches. We then formally introduce the collaborative multi-radar 
tracking problem in section 3. We present our market-based algorithm in section 4. 

2.0 RELATED WORKS 

Several works have focused on the use of decentralized approaches for task allocation for sensors, since the 
seminal work of Lesser et al. [3]. Since then, many approaches have been used, and recently, for real time 
use cases, auction methods have gained much interest in the multi-agent community [5], [8] for their 
capacity to perform good allocation in an affordable time. Many methods have been using auctions since 
then to allocate tasks in real-time, including to robots, sensors and radars (see for instance [10]). 

One of the most successful recent algorithms is CBBA [11]. This algorithm allows to perform the allocation 
in a fully decentralized way, with agents acting both as auctioneers and bidders. This algorithm has since 
been used several times for sensors [1], [7]. However, none of them has taken into account the specificities 
of radars, i.e. their collaboration through the intersection of their uncertainty ellipses, or the challenge of high 
dynamicity. 

3.0 THE COLLABORATIVE MULTI-RADAR TRACKING PROBLEM 

3.1 Radar Model 
In this section, we introduce the different elements of the problem. We first describe the model that has been 
used for the radars. We then introduce a definition of the multi-target multi-radar allocation problem in the 
formalism of Constraint Optimization Problems (COP). 

We consider that each radar has a two-dimensional frame in a polar coordinate system centered on itself. The 
influence of elevation is negligible in our setting, so it is not useful to use a three-dimensional landmark. 
Each target therefore has a position in the radar reference frame determined by its distance, denoted , and its 
azimuth (polar angle), denoted . The precision of the measurement made by the radar is noted:  in 
distance and  in azimuth. The resulting measurement uncertainty is represented as an ellipse. The measure 
itself corresponds to a centered two-dimensional Gaussian random variable of covariance 

 where  represents the rotation matrix of angle . During active tracking, the aim is 

to anticipate the next position of the target, based on its past positions and its current position, using a 
Kalman filter. There is also a prediction uncertainty associated with the measurements. 
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The radar assumes that the signal it receives is subject to Gaussian white noise. The signal-to-noise ratio 
(S/N)1 is assumed to remain constant, with a value set to 13, which is a commonly used value in practice. 
The S/N has an impact on the standard deviation of the measurements and reflects the desired output quality 
specified by the user. With a given S/N, parameters such as the transmitted wavelength or transmission 
power can be selected. 

3.2 Multi-Sensor Multi-Target Allocation Problem 
The problem of optimal allocation of multiple radars and targets can be approached in various ways. If future 
actions are to be considered, we can model them through Dec-POMDP. However, this problem falls under 
the EXPTIME complexity class, and even heuristic methods may take a significant amount of time. 
Additionally, the targets being considered are highly mobile and unpredictable, making it challenging to 
anticipate future movements accurately. Therefore, we propose to formalize the problem of optimal 
allocation for each time step without taking future evolution into account. This problem can be formalized as 
a constraint optimization problem: 

 

such that:  

where: 

•  is the set of radars and  the set of tasks. Note that we are placed here, in the framework . 

• : Corresponds to the utility that the radar  and the radar  provide to the system if the radar  
handles the task j as a main radar and k as an optional radar.  is of the following form, with 

 (respectively ) the surface of the ellipse  (resp. ) described by the matrix  
(resp. ) of the Kalman filter of the radar  (resp. ) for the target  and  the 
intersection volume of these two ellipses. 

• : Boolean variable,  equals 1 if the radar  performs the task  as the main radar, 0 
otherwise. 

• : Boolean variable,  equals 1 if the radar  performs the task  as an optional radar, 0 
otherwise. 

• : Boolean variable,  equals 1 if the radar  performs the task  as main radar and the radar  
performs the task  as optional radar, 0 otherwise. 

The constraints can be understood the following way: 

•  defines  as  following the target  as main radar (we also write ), and  
follows it as optional radar .  if there is only one radar  following the target. The 
operator  corresponds to the logical AND operator. 

 
1 The S/N (Signal to Noise Ratio) corresponds to the ratio between the power of the useful signal and the power of ambient 

noise. 
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•  lists all possible combinations of 2 sensors that track a target . There is at most only one 
combination of sensors that can be chosen. 

•  models the load of the radar. If the radar is tracking the target as main or optional radar, the term 
between parentheses equals 1, otherwise it equals 0 and the load for the task is therefore not 
considered. 

There is a total of  constraints. However, note that this formulation is challenging to 
generalize to a set of n sensors, as it would result in a significant increase in the number of constraints and 
Boolean variables. This, in turn, would make the problem unsolvable2 for a classical solver. In this paper, we 
limit ourselves to two radars for each target. The representation of the uncertainty ellipses is provided on 
Figure 1. On this figure, the radar is represented as a dark blue circle, the target as a red triangle. The orange 
ellipse represents the uncertainty ellipse when the radar starts to track the target. The red ellipse represents 
the uncertainty ellipse, after several Kalman filter steps. 

 

Figure 1: Illustration of uncertainty ellipses during active pursuit. 

4.0 AUCTION-BASED MULTI-RADAR MULTI-TARGET ALLOCATION 

The Consensus Based Bundle Auction algorithm (CBBA) [11] is an algorithm in which agents bid on a 
sequence of tasks based on the information they possess and share information with their neighbors. The 
algorithm can be divided into two phases that are repeated successively:  

1. the bidding phase, during which agents propose a bid on a sequence (or bundle) of actions while 
attempting to optimize utility improvement based on the information they have regarding the current 
situation, and 

2. the consensus phase, where agents share and receive information from neighbors and adjust their 
bundle based on the newly acquired information. 

4.1 The CBBA Algorithm 
The messages that agents send to each other can be represented as a set of vectors. The set of vectors that an 
agent sends to another corresponds to its current knowledge of the system, which includes: 

•  the winning bid utility for each target. For a radar i,  

•  the identity of the winner for each target. For a radar , . 

 
2 Unsolvable in a reasonable time. Indeed, the presence of  boolean variables requires performing an enumeration, i.e.  

possibilities. 
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• , which corresponds to a “timestamp” vector, it makes it possible to manage conflicts by making it 
possible to keep the track of the contacts between radars. For a radar , . It allows to 
select the most up-to-date information when there is a conflict among received information. 

The CBBA algorithm has a performance guarantee of 50%, meaning that in the worst case, the global 
solution obtained is as good as half of the optimal solution. This algorithm is primarily intended for cases 
where planning is relevant, such as when agents are mobile robots and need to plan a route. However, in our 
case, we need to adapt this algorithm to make bids on a set of targets without taking the sequence order into 
account. 

4.2 Adapting CBBA to Radars 
In our case, for the allocation as the main radar, an additional vector will also be sent: the vector 

, which groups the ellipses leading to the winning bids for each target. This allows for the 
calculation of intersections with the ellipses. To meet the Disminishing Marginal Gain (DMG) constraint 
required by CBBA, the utility of any new target being tracked needs to be reduced. To account for this 
constraint, we introduced the following bias: 

 

The algorithm operates in a closed loop and is executed at each time step. The agent first makes an allocation 
as the main radar, and then as an optional radar if it has remaining budget. Each allocation is made through 
the CBBA algorithm, which includes the two phases of the algorithm (auction and consensus) explained 
above. Therefore, it receives and sends information on its allocation as the main and optional radar at each 
time step. A radar does not consider the targets that it follows as the main radar in the list of targets that it 
can take as an optional radar. 

To implement the interaction between radars, the ellipses sent by the radars are taken into account by the 
other radars to perform the utility calculation for the allocation as an optional radar. To follow as many 
targets as possible, when the agent computes its allocation as the main radar, it considers its budget as all of 
its remaining budget plus the budget allocated as an optional radar. If a new allocation as the main radar is 
possible, it deallocates the tasks as an optional radar with the lowest utility and performs a reset as described 
in the previous section. 

In the static case, when all the radars have the same beliefs on the allocation, we say that the consensus is 
established. This means that a distributed allocation conflict-free could be found, which constitutes the end 
of the algorithm. 

To account for the dynamic aspect of our problem, the auctions never stop and keep running until the end of 
the simulation. After a predetermined delay, the radar deletes the knowledge (which has become useless) that 
it had on the target and transmits the information. This reinitialization is used to reset the computed utility 
when the target moves away from a radar and the utility decreases. The general loop (repeated forever) is: 

1. The radar enters the bidding phase as the main radar. To do so, it computes the uncertainty 
ellipses for each target and its utility function. It also applies the Kalman filters to all the targets it 
is already tracking. 

2. If the radar has remaining radar time budget, it proceeds to the bidding phase as an optional radar 
on all the targets that are not already being tracked as the main radar (with its remaining budget). 

3. The radar proceeds to the consensus phase as the primary radar. The vectors , , , and  for 
the main radars are updated, and the vectors are sent to neighbors. 
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4. The radar then proceeds to the consensus phase as an optional radar. The vectors , , and  for 
the optional radars are updated, and the vectors are sent to neighbors. 

5. The radar tracks the targets it has selected, possibly by applying its Kalman filter. 

Note that the radar initiates tracks at each execution of the two phases of CBBA, which means that the 
algorithm does not have time to converge. In practice, this situation can generate conflicts, especially when a 
target is on the edge between two radars and becomes increasingly threatening. In such cases, each radar 
takes its decision based on a previous value of the utility of the others and its own current value. It considers 
that its bid wins the bet. Similarly, targets that become less threatening (i.e., with decreasing utility) may be 
tracked by none of the radars, with each radar considering that another radar has a better bid than itself. 

Our approach solves the task allocation problem in an advantageous way. In the case where the radars 
remain in contact, even if the communication graph evolves during the mission, the algorithm keeps working 
as long as the connection graph of the radars remains path-connected. Finally, by carrying out two sequential 
auction runs, our algorithm also takes into account the possible overlapping of uncertainty ellipses. It thus 
generates an allocation that favors more precise tracking of targets when possible while trying to track as 
many targets as possible (depending on the radar capability). 

Radars must also be able to differentiate between first-round allocation messages, which track as many 
targets as possible, and those that improve accuracy by generating an intersection of uncertainty ellipses. 
Each radar  tries to maximize the sum of the utilities corresponding to the targets that it tracks 
( for the main allocation and  for the optional allocation), while taking into account 
the information received from the other radars, especially the bids made by them. 

The implementation must include an additional target disambiguation mechanism to identify targets that can 
be tracked by multiple radars, including a plot merging algorithm to match the targets from different radars. 
This requires sending additional information, such as the estimated speed and position of the targets, to 
enable this operation to be carried out. 



 

Collaborative Combat: Multi-Radars  
Active Tracking Resources Allocation by Distributed Auctions 

STO-MP-SET-311 MSS-108 - 7 

 

An illustration of the algorithm is represented on  

 
 Initial allocation Sending messages Update (consensus) 

 
 Bidding & sending messages Second consensus stage, consensus reached 

Figure 2: Illustration of our allocation method. 

5.0 RESULTS 

The implementation of our model has been performed using the MESA framework [6] and the Kalman filter 
package [4] on the same simulator used in [2]. We use 5 types of scenarios, which are similar but not 
identical to those used in [2]. The results are averaged over 10 scenarios for each graph. 

• Non saturated well positioned radars (5 radars, 10 targets) 

• Few saturated well positioned radars (3 radars, 12 targets) 

• Several saturated well positioned radars (5 radars, 20 targets) 

• Many saturated well positioned radars (8 radars, 30 targets) 

• Saturated ill-positioned radars (4 radars, 20 targets) 

A capture of the simulator is represented on the Figure 3. The red triangles represent the targets, the dark 
blue circles are the radars and the light blue circles represent their perception limits. The orange ellipses are 
the uncertainty areas around the targets. A green line represents a radar following a target as main radar. A 
violet line represents a radar following a target as optional radar. 
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Figure 3: Capture of the MESA simulator. 

In order to evaluate our work, we compare it to a centralized allocation performed with the Coin-OR Branch 
and Cut (CBC) tool [9]. The results are represented on Figure 4 and are averaged over 10 similar scenarios. 
The blue (resp. orange) curves correspond to the decentralized (resp. centralized) approach. The standard 
deviation is represented in light blue (resp. light orange). 

The blue (or green) curves correspond to the decentralized (or centralized) approach. The average value of 
each of the simulations and the different scenarios for a certain “composition” of Targets and Radars are 
presented. Each of the “compositions” of Targets and Radars is represented on the x-axis as a tuple (Targets, 
Radars). This allows us to compare the performance of the centralized and decentralized approaches with 
equivalent configuration. The colors of the bars correspond to the decentralized (D) or centralized (C) values, 
with optional tracking represented in light colors when relevant. The standard error (in black) is available for 
each of the bars of the different graphs. 
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Figure 4: Utility, coverage and load on the reference scenarios. 
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Regarding the utility, as shown in the previous figure, the centralized approach obtains results superior to the 
decentralized approach. However for the decentralized approach we get a utility clearly higher than the 
theoretical 50% of the CBBA algorithm compared to the centralized approach. 

Regarding the coverage, we notice that for a constant configuration, we obtain equivalent coverage in the 
“main” tracking. However, the coverage is weaker for the “optional” tracking. Regarding the average load, 
we observe that for the configurations studied, there is almost no difference between the centralized and 
decentralized approaches. While we would have liked the decentralized approach to have a much lower load 
than the centralized approach. 

Overall, there are only very small differences between the centralized and decentralized approaches. This can 
be interpreted as a strength for the decentralized approach because the radar configuration could then be 
adaptive (one could suppose that the radars are not fixed but can move) but also resilient, i.e., the global 
system could continue to function normally if a connection is cut, which is not the case with a centralized 
approach since there is only one connection with the control center. Since the load is also more evenly 
distributed, it can be assumed that the decentralized approach can cope with a “surprise” attack without a 
total re-planning, which is not the case for the centralized approach. It should be noted that no experiment 
has been done with a higher number of radars since the constraint of the cost of purchasing a set of radars 
can be very limiting. 

Overall, our approach performs almost as well as the centralized approach. When the radars are not 
saturated, it even performs better. In cases where the radars are saturated and numerous, a less complete 
search leads to targets not being tracked, and the centralized approach is better. 

6.0 CONCLUSION 

In this paper, we have proposed a novel approach for decentralized target allocation to a team of radars based 
on a fully decentralized auction algorithm, CBBA. We have demonstrated that this algorithm’s results are 
comparable to centralized allocation when considering the intersection of uncertainty ellipses. Moreover, our 
approach performs better in cases where the radars are not too numerous and not saturated, but slightly worse 
when the radars are numerous and saturated. 

Future works will focus on designing a more generic approach that can handle an arbitrary number of radars 
following the same target. Additionally, we aim to make our approach more dynamic by incorporating 
replanning approaches that have been proposed to improve CBBA [11]. We will also evaluate this approach 
in the setting imposed by our use-case. 
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